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methods to distribute a set of objects into a set of groups.
Among these methods, hierarchical clustering gives theWe present an implementation of hierarchical clustering methods

to distribute a set of objects into a set of groups. Our code is particu- clearest insight into the structure of a cluster and allows
larly conceived to identify and analyze substructures in galaxy clus- a relatively easy identification of the members of a group.
ters or in large-scale catalogues. However, its general scheme This kind of method can be formulated in terms of opera-
allows for very easy adaptation to any other kinds of systems and

tional concepts, and it has been applied in the field ofphysical problems. The algorithms to draw the hierarchical tree
astronomy by Materne [3], Tully [4, 5], Gourgoulhon et al.associated to a given sample of data, as well as those for analyzing

and interpreting the results obtained from this technique, are also [6], and Serna and Gerbal [2].
presented here. Q 1996 Academic Press, Inc. The aim of this paper is to present an implementation

of the hierarchical clustering methods. Special attention
will be paid to identifying and separating those points

I. INTRODUCTION which depend on the nature of the physical problem under
consideration. Thus, although our code will be applied toSeveral problems in physics require one to determine
identify substructures in galaxy clusters, its adaptation tohow objects in a sample are gathered into groups of a
any other physical system should be very simple. Somespecific nature. For example, much effort is currently de-
examples found in the literature of other physical problemsvoted to the detection of substructures in galaxy clusters,
requiring a grouping analysis are clustering of electronsas well as in large-scale catalogues. Both topics are of major
and holes in disordered solids, signal taxonomy studies,importance in cosmology because they may provide us with
and identification of patterns in CCD images.very valuable information on the cosmological scenarios of

The paper is organized as follows: We describe in Sectionformation of clusters and/or on the internal dynamics of
2 the basic aspects of a hierarchical clustering method. Thethese systems. Several works show that the existence of a
description of the main body of our code is then given insubstructure in a galaxy cluster can be related to intrinsic
Section 3. The algorithms to draw the resulting hierarchicalparameters such as its evolutionary status, and the internal
tree are presented in Section 4, while the procedures toamount and distribution of dark matter [1].
analyze and interpret the results are given in Section 5.The development of methods to detect and identify
Finally, some additional comments are discussed in Sec-groups in a sample of data is therefore necessary to link
tion 6.observations with theoretical predictions and models. A

huge number of papers have been devoted to this subject,

II. HIERARCHICAL CLUSTERING METHODSand numerous methods of substructure detection have
been proposed in the past. In astrophysics, most of these
methods are however purely phenomenological and they A hierarchical method is a grouping scheme in which
merely look for coincidences in the positions and/or the each cluster is obtained through mergers or agglomerations
velocities or galaxies. of smaller ones. In other words:

A different approach in attempting to identify subgroups
1. For a given sample of N objects (e.g., galaxies), thisdefined by their dynamical meaning has been recently pro-

kind of method initially considers each object as constitut-posed by Serna and Gerbal [2] (hereafter referred to as
ing a group by itself, that is, it starts by considering apaper I). This method is based on the mathematical theory
collection of N groups: (hG1j, hG2j, ..., hGnj).of clustering analysis, whose basic objective is often stated

as sorting the observations into groups such that the degree 2. According to some specified criterion, we must then
find the two most related groups, that is, those which mostof ‘‘natural association’’ is high between members of the

same group and low between members of different groups. probably belong to the same structure. These two groups
are then considered as actually constituting a unique group.Clustering analysis provides different mathematical
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An objective ‘‘group’’ definition is often difficult to find.
For example, substructures in galaxy clusters can be de-
fined in several different ways. In paper I, we consider the
fact that the membership of a structure must be much more
stable, against the dynamical evolution of the cluster, than
that of any random subset of galaxies without a real dynam-
ical meaning. As a matter of fact, strongly bound structures
are less sensitive to tidal forces and, hence, their lifetimes
are typically longer than those of weakly bound galaxy
subgroups. We then decided to call ‘‘subclusters’’ those
groups of galaxies presenting such a relative increase in
their membership lifetime.

Provided with a definition of the ‘‘substructure’’ we must
now decide, in a collection of N groups, the two which most
probably belong to the same structure. The conventional
approach is to compute a measure of association for each
one of the AsN(N 2 1) different pairs of objects. This associ-
ation measure, s, is often called the affinity parameter.
We have shown (paper I) from N-body simulations that
gravitationally bound groups (with a relative increase in
the lifetimes of their memberships) are very well character-
ized when the binding energy Eij is used as the affinity pa-
rameter:

Eij 5 2G
mimj

uri 2 rj u
1

1
2

ei j(vi 2 vj)2, (1)

where mi , ri , and vi denote the mass, position, and velocityFIG. 1. Example of the hierarchical tree (upper panel) corresponding
of galaxy i, whileto a system as that visualized in the lower panel.

ei j 5 mimj/(mi 1 mj) (2)

They are then replaced, or ‘‘merged,’’ by a simple group is the reduced mass of i and j.
Gkl 5 hGk , Glj. So we are left with N 2 1 groups: (hG1j, The choice of s is not enough, however, to determine
hGklj, ..., hGn21j). the hierarchy of relationships among the objects of a sam-

ple. At intermediate stages of the merging sequence, some3. The merging procedure is repeated until only one
groups are in fact constituted by several objects, whilecluster is left, G1 , which contains all the N objects of the
the affinity parameter is defined for individual objects.sample.
Consequently, it is also necessary to specify a linkage

The merging sequence can be easily visualized under the method, that is, some criterion consistent with our choice
form of a hierarchical tree (h-tree). Such a graph shows the for s but giving the association measure between multiele-
smallest groups (or pairs) to the largest structures including ment groups. This linkage method can be used to construct
several subgroups (see Fig. 1). a similarity array describing the strength of all the relation-

Obviously, the hierarchical method described above can ships among the groups existing at a given stage of the
be applied to several kinds of problems. In order to con- merging sequence. The clustering analysis theory provides
struct a particular grouping method, we must specify: three different linkage techniques to construct the affinity

array Sij for a given choice of s:1. What kind of groups do we want to find?; that is,
what is our group definition? 1. Single linkage. Each group is characterized by the

largest s value needed to connect any member of the2. Which is the physical parameter that best character-
merged group to some other member of that group:izes the degree of association between the groups defined

in that way?
Sij 5 min

e[Gi
n[Gj

(Een). (3)3. Which is the most appropriate merging criterion, in
terms of the above parameter?
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2. Complete linkage. Each group is characterized by
the largest s value needed to connect every member of the
merged group to every other member of that group:

Sij 5 max
e[Gi
n[Gj

(Een). (4)

3. Centroid clustering. Each merged group is character-
ized by the value of s between the averages or mass center
properties of its ‘‘parent’’ groups

Sij 5 EGiGj
, (5)

where EGiGj
is the affinity (relative energy) between

the average of i [ Gi and that of j [ Gj .

A comparative study of the main properties of these
different linkage methods has been extensively performed
in the literature (see, e.g., Ref. [7]). The single-linkage
method is one of the very few techniques which can outline
clusters with a non-ellipsoidal form, and the resulting
h-tree is invariant to any monotonic transformation of the
affinity parameter. It also has interesting connections with
certain aspects of graph theory, as the problem of finding

FIG. 2. General diagram of a hierarchical clustering analysis.the minimum spanning tree. Its main disadvantage is that
it can fail to distinguish between two groups poorly sepa-
rated in the s space. Complete linkage is also invariant
to monotonic transformations of the affinity measure. In A. Hierarchical Clustering Method
contrast to the single-linkage method, it can only be inter-

The degree of complexity of a hierarchical tree can bepreted in terms of the relationships within individual
very high, especially for samples containing a large numbergroups, while the differences between groups are not deter-
of objects and subclusters. Because of this, its numericalmined very reliably. Although it has some aspects common
processing seems a priori rather complex. Fortunately, allto a maximally connected subgraph, it has no special inter-
the information contained in a hierarchical tree can bepretation in graph theory terms. Finally, the centroid
stored and easily extracted by using a merge list. For exam-method and its variants have the great disadvantage that
ple, in the pioneering implementation of these methodsreversals can occur, that is, the Sij value corresponding to
proposed by Anderberg [7], the merge list was a N 3 7the groups to be merged may rise and fall from stage to
array where he had to specify the different paths to movestage of the hierarchical merging sequence. When these
within it.reversals occur, the resulting h-tree has no meaningful

We propose instead a more simple merge list consistinginterpretation.
of just four columns, Mk,l

list (k 5 1, ..., N; l 5 1, ..., 4). Its
kth row corresponds to the kth stage in the merging se-III. IMPLEMENTATION OF H-METHODS
quence. The information stored in its four l columns is

We will describe now our computational implementation the following:
of the hierarchical clustering method. The general scheme

1. m, the identification number of the greatest of theof such a program consists of three main parts (see Fig. 2):
two merged clusters at the kth stage. This number will

1. Calculation of all the information needed to extract, identify the resulting merged group.
from a given sample, its corresponding hierarchical tree.

2. n, the identification number of the smallest of the
2. Drawing the resulting hierarchical tree. two merged clusters at the kth stage.
3. Analysis of that tree in order to identify the groups

3. Nm , number of objects in cluster m.existing in the sample as well as to estimate the significance
and the main physical features of such groups. 4. Nn , number of objects in cluster n.
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TABLE I desirable to minimize the computational effort expended
in these two steps.Merge List for the H-Tree of Figure 1

Obviously, a first fact that we should use is that both
k m n Nm Nn k m n Nm Nn the affinity parameter and the affinity array are generally

symmetric: sij 5 sji , Sij 5 Sji . This is the case in which sij
1 1 10 1 1 8 11 7 2 1 is the binding energy Eij , and Sij is obtained through a
2 11 12 1 1 9 3 11 3 3

single linkage. Then, we need only to compute the triangu-3 1 5 2 1 10 3 14 6 1
lar arrays Si, j,i

pair and Si, j,i
group .4 3 4 1 1 11 3 9 7 1

5 3 2 2 1 12 3 6 8 1 On the other hand, the computation of Spair is only
6 1 13 3 1 13 1 8 5 1 needed at the beginning of the clustering sequence. Since
7 1 15 4 1 14 3 1 9 6 at that first stage all the individual objects are considered

as groups, the affinity array between groups, Sgroup , will
be identical to Spair . At subsequent stages, Spair remains
obviously unchanged while Sgroup must be updated in order

In addition, the affinity between the two merged groups to take into account the modifications due to the last merg-
at each stage is stored in the real array s j

val ( j 5 1, ..., N). ing of groups. Although the number of elements of Sgroup
For example, the merge list corresponding to the tree is proportional to N2, it is important to recall that the

displayed in Fig. 1 is that shown in Table I. It is straightfor- elements Si, j
group with i different from ilast (5 last merged

ward exercise to see how Fig. 1 leads to Table I, and
vice versa.

In order to construct the merge list, we proceed as indi-
cated in the flow diagram shown in Fig. 3. That is:

1. We initially compute the array Si, j
pair containing the

value of the affinity parameter sij between all the different
pairs of individual objects in the sample. If we are inter-
ested in finding substructures in galaxy clusters, a suitable
choice for sij is that given by Eq. (1).

2. At each stage of the merging sequence, we compute
the affinity array Si, j

group containing the value of Sij for all
the different pairs of groups existing at that stage. In the
case of galaxy groups, the best choice of Sij is that obtained
by using the single-linkage of Eq. (3).

3. We extract the two groups k, l presenting the highest
affinity, that is, those which satisfy

Sk,l
group 5 min

i j
(Si, j

group) ; sm
val . (6)

4. These two groups are replaced by a single group, so
that we are left with N 2 1 groups. The array which contains
the elements belonging to each group is then updated by
setting Gk < Gl R Gk and Gl R 0. the Mlist array is also
updated by setting

Mm
list 5 (k, l, Nk , Nl),

where Nk and Nl are the numbers of objects in the groups
Gk and Gl , respectively.

5. If more than a group is left, we repeat this procedure
from the step 2.

The search for the next merging pair and the subsequent
updating of the affinity array is the main computational

FIG. 3. Flow diagram corresponding to the hierarchical method.burden for a hierarchical clustering analysis. It is then
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group) need not be recalculated. Consequently, the com- draw the complete hierarchical tree. Such segments are
specified by the coordinates of their extremes (x1 , y1),puting time expended by our algorithm in the updating of

Sgroup just grows proportionally to the number of groups (x2 , y2), stored in the [3(N 2 1) 1 1] 3 4 array
existing at that stage.

We give in Figs. 4 and 5 the listing of our main algorithm Pi, j
line ; (xi

1 , xi
2 , yi

1 , yi
2).

for hierarchical clustering methods. The merge list Mlist as
well as the array Sgroup is calculated in subroutine merging. The second task consists of finding the array ident( j) ; I j

At each stage, this subroutine also updates the array ( j 5 1, ..., N), where the identification numbers of the
Ni, j

groups , which contains the identification of the objects objects appear ordered in the same way as that in the
belonging to each existing group, and calls to the subrou- hierarchical tree. For instance, in the example shown in
tine linkage, where the affinity array Sgroup between groups Fig. 1, the array ident is (3, 4, 2, 11, 12, 7, 14, 9, 6, 1, 10,
is updated. The variables that we must provide to merging 5, 13, 15, 8).
are: the number of objects in the sample, N, and their
coordinates. For a galaxy cluster, such coordinates are the A. Calculation of ident and of the Horizontal Segments
masses (body), positions (x0), and velocities (v0) of each in the h-Tree
of its N objects. Evidently, the catalogues of galaxies only

We recall that the merge list is constituted by (N 2 1)contain apparent magnitudes, angular positions, and red-
rows and 4 columns. The last row of Mlist corresponds toshifts of their objects. Such data must be previously read
the last merger in the hierarchical sequence, that is, thatand transformed into the mentioned coordinates, which in
sequence giving a system which contains all the objects inturn requires specifying the Hubble constant and the mass-
the sample. Our algorithm starts by considering this lastto-luminosity ratio of the cluster. As output variables, sub-
merging, that is, the row k 5 N 2 1 of Mlist .routine merging gives the merge list, Mlist; the association

We call j1 and j2 those elements of ident so thatmeasure between the two merging groups at each stage,
sval ; as well as the identification of the elements which

I j1 5 Mk,1
listconstitute the resulting merged group, Mident .

Note that, before the merging of the two most similar I j2 5 Mk,2
list .

groups, subroutine merging calls merge–cond. This last
subroutine verifies whether the group which would result Obviously, in the merging k 5 n 2 1, the largest of the
from the merging of k and l satisfies some additional condi- merging groups coincides with the first element of ident,
tion that we wish to impose. For example, in galaxy clusters, that is, j1 5 1 and I j1 5 Mn21,1

list .
we could impose that the collapse time of their substruc- Since the number of objects belonging to the group
tures must be shorter than the age of the universe. If such Gident( j1) is given by Mk,3

list , the values of j2 and I j2 can be
a condition is satisfied (m–cond 5 .true.), the subroutine easily calculated from:
merging proceeds to the merging of k and l. Otherwise, it
will try to find other better candidates. The incorporation j2 5 j1 1 Mk,3

listof an additional condition is not always necessary in a
Ij2 5 Mk,2

list .hierarchical clustering method. In that case, we can ignore
it by assigning the value m–cond 5 .true. at every stage
of the merging sequence. We have thus determined the interval of elements in ident

which corresponds to the objects of the group Gident( j1) , as
well as that corresponding to the objects of Gident( j2) . TheIV. DRAWING A HIERARCHICAL TREE
horizontal segment in the h-tree, which represents the

An h-tree gives an effective visual representation of the merging of these two groups, begins in the middle of the
clustering results. It permits a rapid understanding of the interval Gident( j1) in ident and ends in the middle of the
hierarchical relationships and membership of each cluster interval of ident corresponding to the elements of Gident( j2) .
at any level of aggregation. Because of this, much effort In other words, the coordinates of the extremes of such a
has been devoted to constructing efficient algorithms to segment are:
draw such trees [8–10]. In this section, we present a new
algorithm for h-tree construction. x1 5 j1 1 (Mk,3

list 2 1)/2
The merge list contains all the information needed to

y1 5 sk
valdraw a hierarchical tree and to identify the sample objects

associated with each one of its branches. The first of these x2 5 j2 1 (Mk,4
list 2 1)/2

tasks consists of determining the set of (N 2 1) horizontal
y2 5 sk

val ,segments and 2(N 2 1) 1 1 vertical segments needed to
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FIG. 4. Listing of subroutine merging.
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FIG. 5. Listing of subroutine linkage.

where sk
val is the value of the association measure between which coincides with one of the 2(N 2 1) extremes of

the horizontal segments previously obtained. The lowerboth groups. Our algorithm descends progressively
through the merge list until it arrives at the first row k 5 extreme is instead determined by the point in which the

vertical line going through (x1 , y1) intersects, for the1. At each step k of this algorithm, j1 is now obtained by
searching out, among the already identified elements of first time, a horizontal segment located in lower

y-positions. Our algorithm uses this property to determineident, that verifying Ij1 5 Mk,1
list . The values of j2, Ij2, and

of the coordinates of the horizontal segment associated each one of the vertical segments. In other words, the
coordinates (xh , yh) of the extremes of every horizontalwith that merging are then calculated as before. When the

sequence has finished, all the elements of ident have been segment stored in Pline define the upper extreme of a
vertical segment:identified, as well as all the horizontal segments of the

h-tree.
(x1 , y1) 5 (xh , yh) 5 (P j3,k

line , Pj3,k11
line ),

B. Calculation of the Vertical Segments of the h-Tree with
We see in Fig. 1 that each one of the vertical segments

of the h-tree has, as its upper extreme, a point (x1 , y1) j3 5 1, ..., (N 2 1) and k 5 1 or 3.
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FIG. 6. Listing of subroutine drawtree.

We look then for the row j4 of Pline so that 6 the listing of the subroutine drawtree, where this algo-
rithm is performed.

Pj4,1
line # xh # Pj4,3

line .

V. ANALYZING A HIERARCHICAL TREEThe coordinates of the searched lower extreme are thus:

Unlike some other topics in statistics, the methods em-(x2 , y2) 5 (x1 , Pj4,2
line).

ployed in cluster analysis have a great degree of flexibility
and subjectivity. Strategies of cluster analysis are at a ratherIf j3 5 N 2 1 (terminal branches), the value assigned for

y2 must be some fixed value smaller than minj(s j
val). By embryonic stage of development and refinement.

A collection of 2(N 2 1) different ‘‘subgroups’’ appearsrepeating this procedure, we thus find the 2(N 2 1) vertical
segments. To them, we can add another, of arbitrary exten- to be involved in the sequence of (N 2 1) hierarchical

mergers stored in the merge list. Obviously, most of thesesion, above the middle of the highest horizontal segment.
This last segment just represents the overall set of data. ‘‘subgroups’’ just represent intermediate stages of the hier-

archical method and they cannot be considered as substruc-Once this is performed, any graphic library (i.e., pgplot)
can be used to draw the 3(N 2 1) 1 1 segments defined tures with a real physical meaning. In the analysis of the

h-tree, we must decide whether some of such subgroupsby the points (Pj,1
line , Pj,2

line) and (Pj,3
line , Pj,4

line). We give in Fig.
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can be considered as a true structure. If so, we must also
calculate the most interesting physical features of such
substructures.

The criterion to decide the significance of a group,
and the physical properties that our analysis subroutine
must calculate, depend both on the nature of the data
sample and on our physical motivations. We will just
provide here some basic ideas that we believe especially
well suited to analyze galaxy clusters and large-scale
galaxy catalogues.

A. Extraction of Subgroups

In the example shown in Fig. 1, it seems natural to
consider h1, 10, 5, 13, 15, 8j and h3, 4, 2, 11, 12, 7, 14, 9, 6j,
the last with the small-scale groups h3, 4, 2j and h11, 12, 7j,
as the unique subgroups with a possible real dynamical
meaning. We see in Table I that, except for k 5 14 and 9,
the smallest of the two groups involved in each merging
is always constituted by only one object. These two stages
(k 5 14 and 9) correspond to the merging of the two above-
quoted pairs of groups. Thus, the fact that such groups
seem more natural than the other ones can be stated by
the following condition: they are groups of at least nmin

(.1) objects which aggregate to groups of at least nmin ob-
jects.

In our code, we have used that condition as the criterion
to extract the possible real subgroups in a sample. That is,
we look in the merge list for those mergers so that the
number of objects, Mk,4

list , in the smallest of the two merging
groups is larger than nmin . The membership of each one
of these groups is then extracted from Mident and stored
for subsequent analyses (see Fig. 7).

Note that the most appropriate value of nmin could some-
times be larger than 2, for example, if we do not wish to
identify simple galaxy pairs with possible substructures.

FIG. 7. Listing of subroutine extract.

B. Analysis of the Extracted Substructures

Once the possible substructures of a sample have been
ping of the Gaussian distributions of each one of its struc-extracted, we must analyze their significance as well as
tures, as well as that corresponding to the overall cluster.their most interesting physical features. In spite of the

According to this approximation, the most meaningfulfact that hierarchical clustering methods are not conceived
structures will have a most important contribution to thefrom a statistical point of view, an estimate of the signifi-
fitting of the total distribution of observed positions andcance of the extracted subgroups can be useful for the
velocities in the cluster. A measure of the statistical signifi-interpretation of results. However, we must not forget that
cance of the group k can be then calculated by approximat-such estimates just constitute a helping tool for the scien-
ing the distribution oftist. The final decision on the real significance of a substruc-

ture must be made by also considering other information,
22 log(Lk/L) (7)like its physical features.

Materne [11] estimated the significance of a structure
by assuming that the observed coordinates of the cluster to the function x 2 with a degree of freedom [11].

In Eq. (7), L is the likelihood of the cluster partitiongalaxies satisfy a distribution which consists of the overlap-
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in NS groups (including the background cluster) obtained VI. FINAL COMMENTS
through the h-analysis. Lk is instead the likelihood under

We have described in detail the fundamental strategythe hypothesis that the group k does not exist,
for implementing the hierarchical clustering analysis. In
our code, special attention has been paid to identifying
and separating all those points which depend on the type

L 5 p
N

i51
FONS

j51
f(i, j)G ; Lk 5 p

N

i51
FONS

j51
j?k

f(i, j)G , (8) of data in the sample as well as on the physical nature of
the searched structures. Although our code has been ap-
plied here to the case of substructures in galaxy clusters,
its adaptation to any other kind of system should not be dif-

where f(i, j) is the probability that the galaxy i belongs to ficult.
the group j, assumed to be Gaussian, The physical magnitude which determines the nature of

the extracted structures is the affinity parameter, sij , and
the type of linkage (Eqs. (3)–(5)). We have considered

f(i, j) 5
Nj

(2f)3/2(s j
ad)2s j

v
that sij is the relative binding energy between the objects
of the sample (Eq. (1)), which is especially appropriate
for identifying groups of galaxies. Although other kind of

3 exp F2
(ai 2 aj)2

(s j
ad)2 2

(di 2 dj)2

(s j
ad)2 2

(vi 2 vj)2

(s j
v)2 G , systems would require another definition for sij (and, in

some cases, another type of linkage), but the general struc-
ture of the code, described in Section 3, as well as the
algorithm to draw the h-tree (see Section 4), would beNk being the number of objects in the group j; aj , dj , and
essentially identical. The subsequent analysis of the resultsvj being the mean group coordinates; and s j

ad and s j
v being

would have instead to be readapted for that kind of prob-their standard deviations. The probabilities f(i, j) must be
lem except, perhaps, for what concerns the algorithm ofnormalized so that oNS

j51 f(i, j) 5 1.
extraction of possible real substructures (Section 5).Note that, unlike Materne [11], we do not search for the

It must be noted finally that our clustering method haspartition giving the maximum likelihood. Since the stability
been constructed using the six (r, v) coordinates of eachof our method, as well as the dynamical meaning of the
object. However, as mentioned in Section III A, astronomi-obtained groups, has been tested from N-body simulations,
cal observations only provide the projected positions andwe assume that the results of the h-analysis are directly
the line-of-sight velocities of galaxies. In paper I, wethose which give the maximum likelihood.
showed through N-body simulations that results are re-Obviously, the substructures of a cluster do not always
markably stable against projections, that is, that the ‘‘ob-satisfy a Gaussian distribution. Consequently, Eqs. (7),
served’’ (3D) structures are reasonably similar to the ‘‘in-(8) should be considered just as a first estimate of the
trinsic’’ (6D) ones. Consequently, a hierarchical methodsignificance of the extracted substructures. A more rigor-
based on relative binding energies is very well suited toous calculation would perhaps require Monte-Carlo simu-
being applied in the analysis of galaxy clusters. The mainlations analyzing the modifications introduced by uncer-
difficulty of this method is, however, that the computingtainties in the data. In the case of a galaxy cluster, such
time strongly increases with the number of objects. Conse-uncertainties mainly come from the error bars in the sam-
quently, its application is limited to systems with, at most,ple data and, especially, from the transformation from ob-
some few thousands of objects. The analysis by this proce-served coordinates (a, d, apparent magnitude) to intrinsic
dure of cosmological N-body simulations, which usuallycoordinates (r, v, mass). These Monte-Carlo simulations
consider huge numbers of particles, is then prohibitivelyhave however the disadvantage that, in samples containing
expensive in computing time.a relatively high number of objects, the computing time

increases enormously. Because of this, the current version Note. The package containing the full Fortran code
of our code does not use this last approach. described in this paper, as well as some examples and

In any case, a reliable interpretation of results also re- instructions, can be freely rerceived by e-mail request to
quires one to consider the different physical features of serna@gin.obspm.fr.
each substructure such as, for instance, the virial mass, the
mean harmonic radius, the spherical collapse time, the
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